Monday, October 7, 2013

SV#2: Unit G Concepts 1-7: Graphing Rational Functions








                                                                                                                    
      This problem is about how to graph rational functions and all of their parts. In this problem, we encounter a rational function with a slant asymptote instead of a horizontal asymptote. After finding the asymptote and its equation using long division, we then solve for the vertical asymptote, its equation, and limit notation. In this problem we obtain one hole. Once we have found the domain, x-intercepts and y-intercept, we the graph the asymptotes and all the other components of the rational function on a coordinate plane.            

     In order to understand the problem, the viewer should pay special attention to the process of factoring trinomials and other polynomials. In addition, they should focus on how to write the limit notation of the vertical asymptote and the domain of the graph. The viewer would also greatly benefit from paying attention to the use of the factored rational function throughout the problem.

No comments:

Post a Comment